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Abstract: In this paper we propose a so-called variational sigmoidal transformation, containing two additional
parameters, which inherits principal features of the traditional sigmoidal transformations. The transformation is
used for numerical evaluation of singular integrals appearing inevitably in the numerical techniques for engineer-
ing problems, for example, the boundary element method. The principal role of the transformation is to weaken or
remove the original singularity of the considered integrand. Purpose of this work is to enhance the accuracy of the
numerical evaluation techniques such as the Gauss-Legenre quadrature rule for the weakly integrals and the Euler-
Maclaurin formula for the Cauchy-principal value and Hadamard finite part integrals. Based on the asymptotic
analysis of the transformed integrands, it is proved that the presented transformation combined with the existing
quadrature rules will be effective in improving the approximation errors, thanks to the parameters. Availability of
the proposed method is verified by the results of some numerical examples. In numerical fulfillment we explore the
approximation method, with respect to various values of the parameters included in the presented transformation,
for each case of the singularity of the integrand. It is demonstrated that most numerical results of the proposed
method are consistent with those of the theoretical analysis.

Key–Words: variational sigmoidal transformation, singular integrals, Gauss-Legendre quadrature rule, Euler-
Maclaurin formula

1 Introduction
Accurate numerical evaluation of singular integrals
including, for example, weakly singular integrals and
Cauchy principal value integrals is very important in
implementing the boundary element method. Among
many approximation methods for the singular inte-
grals [1–28] we are interested in the nonlinear coor-
dinate transformation techniques [5–8, 11–13, 19–27]
known to be efficient and easy to use in adaptive ap-
proaches.

The order of the singularity in the weakly singu-
lar integral can be weakened by nonlinear coordinate
transformations having the property of null Jacobian
at the singularity. This nonlinear coordinate transfor-
mation technique is known to be celebrated because
the associated quadrature rule uses the same initial in-
tegration points and weights as those used for the reg-
ular integrals. For example, the study in the literature
[6–8, 11–13, 20, 26, 27] illustrated that a quadrature
rule combined with the sigmoidal transformation re-
sults in very accurate approximation when the number
of integration points is sufficiently large. Explicit es-
timates of the asymptotic truncation errors of quadra-

ture rules combined with the sigmoidal transforma-
tions were derived for weakly singular integrals and
stronger singular ones in the literature [13] and [8],
respectively. It is noticed that some special polyno-
mial transformation methods [2, 3, 21, 22, 25] and the
singularity subtraction method [23] are as powerful as
the sigmoidal transformations for weakly singular in-
tegrals. However, considering Cauchy-principal value
integrals and Hadamard finite part integrals addition-
ally, the sigmoidal transformations combined with the
Euler-Maclaurin formula bring about excellent nu-
merical results [7, 8, 17, 27].

In this paper, aiming accurate numerical evalua-
tion of weakly singular integrals as well as stronger
singular ones via simple adaptive approaches, we in-
troduce a nonlinear transformation containing two pa-
rameters and then consider numerical methods com-
bined with the existing quadrature formulas. The im-
provement of the approximation errors by the pro-
posed method is explored. To be specific, in the fol-
lowing section we define a so-called variational sig-
moidal transformation g

[j]
m (r, x) with two additional

parameters 0 < r < 1 and j ≥ 0 as given in (1). The
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transformation originates from the simple sigmoidal
transformation [20] which is known to be useful in
various numerical integration methods. In Section 3
and Section 4 we show that the proposed transfor-
mation combined with existing quadrature methods
will be effective in improving approximation errors
for the singular integrals. Moreover, numerical results
of several examples for the weakly singular integrals,
Cauchy principal value integrals, and Hadamard finite
part integrals show the availability of the presented
method with the parameters j and r chosen appropri-
ately.

2 A variational sigmoidal transfor-
mation

For a real number 0 < r < 1 and for integers
m > 1 and j ≥ 0 we propose a real valued function
on the interval [0, 1] as

g[j]m (r;x) =
xm

xm +
{

r
1−r (1 − x)

}m+j
, 0 ≤ x ≤ 1 .

(1)
Recently the function g[0]m , the special case of j = 0,
was used for cumulative averaging method for piece-
wise polynomial interpolations [29]. We, in this work,
investigate extended application of the generalized
version g[j]m with an additional parameter j for accu-
rate evaluation of the singular integrals.

We can find some properties of g[j]m (r;x) as fol-
lows.

(i) The special case of j = 0 and r = 1/2 is

g[0]m
(
1
2 ;x
)

=
xm

xm + (1 − x)m
:= γsimp

m (x) (2)

which is the same with the simple sigmoidal
transformation proposed in [20].

(ii) Values of g[j]m (r;x) at the points x = 0, r, 1 are

g[j]m (r; 0) = 0 , g[j]m (r; r) =
1

1 + rj

g[j]m (r; 1) = 1 ,

(3)

independently of the order m.

(iii) g[j]m (r;x) is strictly increasing on the interval
[0, 1] because the derivative of g[j]m (r;x) with re-
spect to x satisfies

d

dx
g[j]m (r;x) > 0 (4)

for all 0 < x < 1.

0

1/2

1

0 1/4 1/2 3/4 1
(x)

j=0

j=2

0

1/2

1

0 1/4 1/2 3/4 1
(x)

j=0

j=2

(a) r = 1
2

(b) r = 3
4

Figure 1. Graphs of g[j]2 (r;x), with j = 0 and 2, for r = 1
2

in (a) and r = 3
4 in (b).

(iv) Series expansion of g[j]m (r;x) near x = 0 is

g[j]m (r;x) =

(
1 − r

r

)m+j

xm + O
(
xm+1

)
(5)

while that of the simple sigmoidal transformation
γsimp
m (x) = g

[0]
m (1/2;x) is

γsimp
m (x) = xm + O

(
xm+1

)
.

It should be noted that the leading coefficient of
the series expansion of g[j]m , denoted by

C [j]
m (r) =

(
1 − r

r

)m+j

(6)

decreases to 0 as r approaches to 1.

We call g[j]m (r;x) a variational sigmoidal transfor-
mation of order m as it coincides with the traditional
sigmoidal transformation when j = 0 and r = 1

2 as
mentioned in the property (i). In Figure 1, graphs of
g
[j]
2 (r;x), with j = 0, 2, are compared for each pa-

rameter r = 1
2 and 3

4 . The graphs illustrate the afore-
mentioned features of the proposed transformation.

3 Weakly singular integrals

We consider two kinds of weakly singular inte-
grals having end point singularities at ξ = 1, for ex-
ample, such as

Iαf :=

∫ 1

−1
(1 − ξ)αf(ξ) dξ , α > −1 (7)

and

Jf :=

∫ 1

−1
f(ξ) log(1 − ξ) dξ. (8)
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To evaluate these integrals numerically, referring to
the semi-sigmoidal transformation technique [12], we
define a modified transformation

g̃[j]m (r;x) := 1 − 2

g
[j]
m (r; r)

g[j]m

(
r;
r(1 − x)

2

)
, (9)

−1 ≤ x ≤ 1, which is a bijective mapping from
[−1, 1] onto itself. By the change of variables ξ =

g̃
[j]
m (r;x), the weakly singular integrals Iαf and Jf

respectively become

Iαf =

∫ 1

−1

{
1 − g̃[j]m (r;x)

}α
f
(
g̃[j]m (r;x)

)
× d

dx
g̃[j]m (r;x) dx

(10)

and

Jf =

∫ 1

−1
f
(
g̃[j]m (r;x)

)
log
(

1 − g̃[j]m (r;x)
)

× d

dx
g̃[j]m (r;x) dx.

(11)

From the property (iv) we can see that the asymptotic
behaviors of the transformed integrands, near the sin-
gular point x = 1, are

O
(

(1 − x)(1+α)m−1
)

and
O
(
(1 − x)m−1 log(1 − x)

)
,

respectively. This implies that the regularity of the
original integrand becomes higher as the order m of
g
[j]
m is increasing. Thanks to the work of Johnston and

Elliott [13], we can observe that the N -point Gauss-
Legendre quadrature rule combined with the transfor-
mation g̃[j]m results in the following asymptotic trun-
cation errors for the transformed integrals in (10) and
(11).

E
[m,j]
α,N f := Iαf − I

[m,j]
α,N f

∼ C [j]
m (r)

1+α{
(−1)m22+(1−2m)(1+α)mf(1)·

Γ
(
2m(1 + α)

)
sin(mαπ)

}
/
(
2m−1(2N + 1)2m

)1+α
(12)

and

E
[m,j]
N f := Jf − J

[m,j]
N f

∼ C [j]
m (r)

π(−1)m22+(1−2m)m2f(1)Γ(2m)

2m−1(2N + 1)2m

(13)

for sufficiently large N . Therein, C [j]
m (r) is the lead-

ing coefficient of the asymptotic behavior of g[j]m (r;x)
near the point x = 0 given in (6), that is,

C [j]
m (r) =

(
1 − r

r

)m+j

and I [m,j]α,N f and J [m,j]
N f denote numerical evaluations

using the N -point Gauss-Legendre quadrature rule
combined with g̃[j]m for the integrals Iαf and Jf , re-
spectively. The formulas (12) and (13) imply that the
errors of the proposed method become better as the
additional parameter j is increasing for any 1

2 < r < 1
and m fixed.

Example 1

We take two examples

Iαf =

∫ 1

−1
(1 − ξ)α

(
1 + ξ2

)
dξ, (14)

with α = −0.7 and

Jf =

∫ 1

−1

(
1 + ξ2

)
log(1 − ξ) dξ. (15)

Exact values of these integrals are Iαf =
6.5606134847 · · · and Jf = −1.0404964074 · · · .
Numerical errors of the Gauss-Legendre quadrature
rule combined with the presented transformation
g̃
[j]
m (r;x) for the integrals I−0.7f and Jf are included

in Table 1 and Table 2, respectively, where we chose
some values of the parameters 0 ≤ j ≤ 4 and 1

2 <
r < 1. In the tables the errors of the quadrature rule
combined with the following semi-sigmoidal transfor-
mation γ̃simp

m (x), used in [12], are also included for
comparison.

γ̃simp
m (x) = 1 − 4γsimp

m

(
1 − x

4

)
, −1 ≤ x ≤ 1

(16)
As a result, one can see that the presented transfor-
mation g[j]m (r;x) is effective in improving the errors
of the existing method as predicted in (12) and (13)
above.

In addition, Figure 2(a) shows the graphs of the
approximation errors E[m,j]

α,N f associated with the pre-

sented transformation g
[j]
m (r;x) for the integral Iαf

with respect to the parameter 0.4 ≤ r ≤ 0.95 with
j = 4,m = 4 andN = 80 fixed. The thick line shows
numerical results of the errors and they are compared
with the asymptotic truncation errors in (12) indicated
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(a) 0.4 ≤ r ≤ 0.95(N = 80) (b) 10 ≤ N ≤ 80(r = 0.9)

Figure 2. The errors − log10

∣∣∣E[m,j]
α,N f

∣∣∣, with m = 4 and
j = 4, for the weakly singular integral Iαf , α = −0.7, in

Example 1.

(a) 0.4 ≤ r ≤ 0.95 (N = 80) (b) 10 ≤ N ≤ 80 (r = 0.9)

Figure 3. The errors − log10

∣∣∣E[m,j]
N f

∣∣∣, with m = 2 and
j = 2, for the weakly singular integral Jf in Example 1.

by the thin line. The dotted horizontal line shows
the numerical error corresponding to the simple sig-
moidal transformation γsimp

m (x). Figure 2(b) illus-
trates numerical results of approximation errors of the
presented method with respect to the number of inte-
gration points 10 ≤ N ≤ 80 with j = 4, m = 4 and
r = 0.9 fixed. The dotted line indicates numerical
errors corresponding to γsimp

m (x).
Similarly, for the logarithmic singular integral Jf

in (15), Figure 3 illustrates numerical results of the
proposed method with j = 2, m = 2 by the thick
lines and those of the existing method combined with
the simple sigmoidal transformation γsimp

m (x) by the
dotted lines.

From Figure 2 and Figure 3 we can find that the
numerical errors of the proposed method are consis-
tent with the theoretical asymptotic errors over the
range 0.5 < r < 0.95, approximately. Furthermore,
the superiority of the proposed method over the exist-
ing method is maintained for large number of integra-
tion points, that is, for N ≥ 30.

4 Cauchy principal value integrals
and hyper singular integrals

In this section, for an interior point 0 < ξ < 1,
we consider the Cauchy principal value integral

K1φ(ξ) := −
∫ 1

0

φ(y)

y − ξ
dy

= lim
ε→0+

(∫ ξ−ε

0
+

∫ 1

ξ+ε

)
φ(y)

y − ξ
dy,

(17)

where φ is Hölder continuous on the interval [0, 1] and
the Hadamard finite-part integral

K2φ(ξ) := =

∫ 1

0

φ(y)

(y − ξ)2
dy

=
d

dx
−
∫ 1

0

φ(y)

y − ξ
dy,

(18)

where φ′ is Hölder continuous on [0, 1].
In general, for the presented transformation g[j]m in

(1), if we change the variable 0 ≤ y ≤ 1 by

y = g[j]m (r; t) , 0 ≤ t ≤ 1 (19)

then the integrals in (17) and (18) respectively become

K1φ(ξ) = −
∫ 1

0

Φm(t)

g
[j]
m (r; t) − ξ

dt

K2φ(ξ) = =

∫ 1

0

Φm(t)

(g
[j]
m (r; t) − ξ)2

dt,

(20)

where

Φm(t) = φ
(
g[j]m (r; t)

) d

dt
g[j]m (r; t). (21)

Set

tν =
1 + ν

2
(22)

for a number −1 < ν ≤ 1. Then the literature [7, 8,
17] introduced the formula

Kiφ(ξ) =
(
Q

[m,j]
i,N φ

)
(ξ) +

(
E

[m,j]
i,N φ

)
(ξ), (23)

i = 1, 2, where Q
[m,j]
i,N φ’s, known as the Euler-

Maclaurin formula, are the N points quadrature sums
for the integrands in (20) using the nodes tk = (k +
tν)/N , k = 0, 1, 2, · · · , N − 1 (See the literature
[7, 8, 17] for complete formulas of Q[m,j]

i,N φ’s).
Referring to the literature [17, 28], we can repre-

sent the asymptotic truncation errors as given in the
following theorem.
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Theorem 1 Suppose a function φ is analytic on (0, 1)
and it has asymptotic behaviors

φ(y) ∼ k0y
α0 , φ(y) ∼ k1(1 − y)α1

near y = 0 and y = 1, respectively, where α0, α1 >

−1 and k0, k1 are non-zero constants. Let C [j]
m (r) be

the leading coefficient of the transformation g[j]m (r;x)
with m > 1, j ≥ 0 and 0 < r < 1. Then, for an
integer N large enough and for a number tν in (22),
we have∣∣∣(E[m,j]

i,N φ
)

(ξ)
∣∣∣

∼

∣∣∣∣∣C [j]
m (r)1+α0k0mζ̄ (−(m(1 + α0) − 1), tν)

Nm(1+α0)(−ξ)i

+
C

[j]
m (r)1+α1k1mζ̄ (−(m(1 + α1) − 1), N − tν)

Nm(1+α1)(1 − ξ)i

∣∣∣∣∣ ,
(24)

i = 1, 2, where 0 < ξ < 1, and ζ̄(s, t) denotes a
function which is periodic in t with period 1 and co-
incides with the Riemann– zeta function ζ(s, t) when
0 < t < 1.

Example 2

We consider two singular integrals,

K1φ(ξ) = −
∫ 1

0

√
y(1 − y)

U4(2y − 1)

y − ξ
dy(

= −π
2
T5(2ξ − 1)

) (25)

and

K2φ(ξ) = =

∫ 1

0

√
y(1 − y)

U4(2y − 1)

(y − ξ)2
dy

( = −5πU4(2ξ − 1))

(26)

in which Tn and Un denote Chebyshev polynomials
of degree n of the first and second kind, respectively.

Since

φ(y) ∼ U4(−1)y
1
2 , φ(y) ∼ U4(1)(1 − y)

1
2 ,

near y = 0 and y = 1, respectively, it follows that
α0 = α1 = 1/2, k0 = U4(−1) = 5 and k1 =
U4(1) = 5. Therefore, in using the presented sig-
moidal transformation g[j]m (r;x), Theorem 1 implies∣∣∣(E[m,j]

i,N φ
)

(ξ)
∣∣∣ ∼ (

1 − r

r

) 3
2
(m+j)

× 5m

N
3
2
m

∣∣∣∣∣ ζ̄(1 − 3
2 m, tν)

(−ξ)i
+
ζ̄(1 − 3

2 m,N − tν)

(1 − ξ)i

∣∣∣∣∣
(27)

for each i = 1, 2. When the simple sigmoidal trans-
formation γsimp

m (x) is employed, it follows that∣∣∣(E[m,j]
i,N φ

)
(ξ)
∣∣∣ ∼ 5m

N
3
2
m

∣∣∣∣∣ ζ̄(1 − 3
2 m, tν)

(−ξ)i

+
ζ̄(1 − 3

2 m,N − tν)

(1 − ξ)i

∣∣∣∣∣ .
(28)

Comparing the formulas (27) and (28), one can
observe that the presented variational sigmoidal trans-
formation g[j]m (r;x) can improve the errors of the sim-
ple sigmoidal transformation by the factor

R =

(
1 − r

r

) 3
2
(m+j)

. (29)

It should be noted that R < 1 when 1
2 < r < 1 and it

decreases as the parameter r goes to 1.
Numerical errors of the Euler-Maclaurin formula,

with ν = 0.3, combined with the presented transfor-
mation g

[j]
m (r;x) and the simple sigmoidal transfor-

mation γsimp
m (x) are given in Table 3 for K1φ

(
1
10

)
and in Table 4 for K2φ

(
1
10

)
. We chose the parame-

ters j = 0, 2, 4 and r = 0.6, 0.75 in using g[j]m (r;x).
One can see that the Euler-Maclaurin formulas based
on g[j]m (r;x) highly improve those based on γsimp

m (x)
for most of the selected values of the parameters j and
r.

In Figure 4(a) and Figure 5(a) the thick lines show
the graphs of the numerical errors

(
E

[m,j]
i,N φ

) (
1
10

)
, as-

sociated with the presented transformation g[j]m (r;x)
for the integral Kiφ

(
1
10

)
, i = 1, 2, with respect to

the parameter 0.4 ≤ r ≤ 0.85 with j = 2, m = 2
and N = 80 fixed. The numerical errors are com-
pared with the theoretical asymptotic errors in (24)
indicated by the thin line. The dotted horizontal line
shows the numerical error corresponding to the simple
sigmoidal transformation γsimp

m (x). Figure 4(b) and
Figure 5(b) illustrate numerical results of approxima-
tion errors corresponding to the presented transforma-
tion with respect to the number of integration points
10 ≤ N ≤ 80 with r = 0.8 fixed. The dotted lines
indicate numerical errors corresponding to the simple
sigmoidal transformation γsimp

m (x).
Figure 4 and Figure 5 imply that the numerical

errors of the proposed method are consistent with the
theoretical asymptotic errors over the range 0.4 < r <
0.8, approximately. In addition, like the case of the
weakly singular integrals, one can see that the pro-
posed method over the existing method is maintained
for N ≥ 30.
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(a) 0.4 ≤ r ≤ 0.85 (N = 80) (b) 10 ≤ N ≤ 80 (r = 0.8)

Figure 4. The errors − log10

∣∣∣(E[m,j]
1,N φ

)
(ξ)
∣∣∣ with m = 2

and j = 2 for the Caucy singular integral K1φ(ξ), ξ = 1
10 ,

in Example 2.

(a) 0.4 ≤ r ≤ 0.85(N = 80) (b) 10 ≤ N ≤ 80(r = 0.8)

Figure 5. The errors − log10

∣∣∣(E[m,j]
2,N φ

)
(ξ)
∣∣∣ with m = 2

and j = 2 for the Hadamard finite part integral K2φ(ξ),
ξ = 1

10 , in Example 2.

5 Conclusion
In this paper, for the purpose of efficient numerical
evaluation of singular integrals appearing in imple-
mentation of the boundary element method, we in-
troduced a variational sigmoidal transformation con-
taining additional parameters. It was proved that the
presented transformation combined with the existing
quadrature rules is available in improving the approx-
imation errors. We have observed that the numer-
ical results for some examples of a weakly singu-
lar integral, a Cauchy-principal value integral, and a
Hadamard finite part integral are consistent with the
theoretical results of the asymptotic error analysis.
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Table 1. Numerical results of the errors
∣∣∣E[m,j]

α,N f
∣∣∣ corresponding to the presented transformation g̃[j]m (r;x) and the sigmoidal

transformation γ̃simp
m (x) for the weakly singular integral Iαf , α = −0.7, in Example 1.

g̃
[0]
m (r;x) g̃

[2]
m (r;x) g̃

[4]
m (r;x)

m N γ̃simp
m (x) r = 0.6 r = 0.9 r = 0.6 r = 0.9 r = 0.6 r = 0.9

20 3.2 × 10−4 2.4 × 10−4 6.2 × 10−5 1.7 × 10−4 1.0× 10−5 1.3 × 10−4 2.7 × 10−3

4 40 6.2 × 10−5 4.7 × 10−5 9.0 × 10−6 3.3 × 10−5 2.3 × 10−6 2.5 × 10−5 5.2× 10−7

80 1.2 × 10−5 9.1 × 10−6 1.7 × 10−6 6.4 × 10−6 4.5 × 10−7 4.7 × 10−6 1.2× 10−7

20 4.9 × 10−6 3.3 × 10−6 4.4 × 10−4 2.5× 10−6 3.8 × 10−3 3.7 × 10−6 1.1 × 10−2

6 40 4.3 × 10−7 2.9 × 10−7 2.2 × 10−8 2.0 × 10−7 2.9× 10−8 1.5 × 10−7 1.7 × 10−6

80 3.6 × 10−8 2.4 × 10−8 2.0 × 10−9 1.7 × 10−8 5.2 × 10−10 1.2 × 10−8 1.3× 10−10

Table 2. Numerical results of the errors
∣∣∣E[m,j]

N f
∣∣∣ corresponding to the presented transformation g̃[j]m (r;x) and the sigmoidal

transformation γ̃simp
m (x) for the weakly singular integral Jf in Example 1.

g̃
[0]
m (r;x) g̃

[1]
m (r;x) g̃

[2]
m (r;x)

m N γ̃simp
m (x) r = 0.6 r = 0.9 r = 0.6 r = 0.9 r = 0.6 r = 0.9

20 1.1 × 10−5 7.3 × 10−6 4.4× 10−7 3.9 × 10−6 2.4 × 10−6 2.2 × 10−6 1.2 × 10−5

2 40 7.5 × 10−7 4.8 × 10−7 3.0 × 10−8 2.5 × 10−7 3.1 × 10−9 1.4 × 10−7 3.3× 10−10

80 4.8 × 10−8 3.1 × 10−8 1.9 × 10−9 1.6 × 10−8 2.0 × 10−10 9.2 × 10−9 2.1× 10−11

20 4.0 × 10−8 2.0 × 10−8 2.4 × 10−6 1.1 × 10−8 2.2 × 10−5 6.4× 10−9 4.3 × 10−4

3 40 6.7 × 10−10 3.4 × 10−10 5.4 × 10−12 1.8 × 10−10 3.7× 10−12 1.0 × 10−10 3.7 × 10−10

80 1.1 × 10−11 5.6 × 10−12 8.7 × 10−14 3.0 × 10−12 9.2 × 10−15 1.7 × 10−12 9.8× 10−16

Table 3. Numerical results of the errors
∣∣∣(E[m,j]

1,N φ
)

(ξ)
∣∣∣ corresponding to the presented transformation g[j]m (r;x) and the

sigmoidal transformation γsimp
m (x) for the Cauchy singular integral K1φ(ξ), ξ = 1

10 , in Example 2.

g
[0]
m (r;x) g

[2]
m (r;x) g

[4]
m (r;x)

m N γsimp
m (x) r = 0.6 r = 0.75 r = 0.6 r = 0.75 r = 0.6 r = 0.75

20 1.5 × 10−4 9.8 × 10−5 5.4 × 10−4 1.0 × 10−5 6.4 × 10−5 3.8× 10−6 5.6 × 10−3

2 40 1.9 × 10−5 1.2 × 10−5 5.8 × 10−5 1.4 × 10−6 1.4 × 10−8 4.0 × 10−7 7.9× 10−9

80 2.4 × 10−6 1.5 × 10−6 6.9 × 10−6 1.9 × 10−7 2.8 × 10−9 5.4 × 10−8 1.1× 10−10

20 1.3 × 10−6 4.5× 10−7 1.9 × 10−5 1.0 × 10−5 3.3 × 10−3 3.0 × 10−4 4.3 × 10−2

3 40 5.5 × 10−8 1.7 × 10−8 1.9 × 10−7 2.6 × 10−9 2.3 × 10−9 7.2× 10−10 1.5 × 10−6

80 2.4 × 10−9 6.7 × 10−10 6.5 × 10−9 1.1 × 10−10 1.5 × 10−12 3.3 × 10−11 2.1× 10−14

Table 4. Numerical results of the errors
∣∣∣(E[m,j]

2,N φ
)

(ξ)
∣∣∣ corresponding to the presented transformation g[j]m (r;x) and the

sigmoidal transformation γsimp
m (x) for the Hadamard finite part integral K2φ(ξ), ξ = 1

10 , in Example 2.

g
[0]
m (r;x) g

[2]
m (r;x) g

[4]
m (r;x)

m N γsimp
m (x) r = 0.6 r = 0.75 r = 0.6 r = 0.75 r = 0.6 r = 0.75

20 1.3 × 10−3 3.2 × 10−4 5.4 × 10−4 1.0 × 10−4 4.4 × 10−5 2.6× 10−5 1.9 × 10−3

2 40 1.7 × 10−4 4.3 × 10−5 5.7 × 10−5 1.4 × 10−5 2.4 × 10−7 4.0 × 10−6 1.0× 10−8

80 2.1 × 10−5 5.5 × 10−6 6.8 × 10−6 1.8 × 10−6 2.9× 10−8 5.4 × 10−7 3.7 × 10−8

20 1.2 × 10−5 1.6× 10−6 4.4 × 10−6 8.1 × 10−6 2.8 × 10−4 3.1 × 10−4 3.3 × 10−2

3 40 5.4 × 10−7 7.7 × 10−8 8.3 × 10−7 2.6 × 10−8 4.0× 10−10 1.9 × 10−8 6.1 × 10−7

80 2.4 × 10−8 3.5 × 10−9 4.8 × 10−9 1.1 × 10−9 9.2 × 10−12 4.0 × 10−10 7.0× 10−13
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